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ABSTRACT

In this paper we extend and generalize",to the multivariate set-up

our earlier investigations related to expected remaining life functions

and general hazard measures including representations and stability

theorems for arbitrary probability distributions in terms of these con-

cepts. (The univariate case is discussed in detail in Kotz and Shanbhag,
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' I. INTRODUCTION

• -. In the earlier paper by the authors, Kotz and Shanbhag (1980) (to

- be referred to as KSh for brevity) presented a detailed discussion of

?" "new approaches to univariate probability distributions. We concentrated

-i.1

on representations and characterizations of probability distribution

z, functions in terms of conditional expectations (specifically in terms of

"' '.-.,the expected remaining life function - e.r.l, function) and in terms of

b'

.r. , hazard measures.

In the course of our investigations, we succeeded in extending,

" ] generalizing and simplifying a number of results dealing with e.r.l.

functions and hazard measures which have appeared in the literature of

the last two decades. We also presented some convergence theorems which

[ shed light on the structure of e.r.l, functions, hazard measures and

rdistribution functions in both the continuous and discrete cases (but

~not restricted to these cases only).

. In many instances of practical applications, requiring model build-

ing, there are indications of such results being of special potential

-

i importance.

the-"The present paper is structured along the lines of KSh (1980) but

"is an initial attempt towards studying more subtle and difficult prob-

lems of multivariate distributions. In this paper, we shall attempt

to unify, extend, generalize and simplify results scattered in the

: _, literature related to structures of multivariate distributions (in

T .> particular but not exclusively of a non-absolutely continuous nature),

of various definitions of hazard measures. (Unlike the univariate case

there is no unique definition of this concept in the multivariate case

- in the literature.) Among other results, an over-compassing generali-

helzation of the scalar multivariate hazard measure is given and an overall

diribtio fucton in bot the cotnuu an dsrtecss(u
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structure as well as certain convexity properties and their implications

related to this measure are revealed. In addition, we define and inves-

tigate multivariate analogues and extensions of e.r.l. functions and

trace their relations, first to the multivariate probability distribu-

tion functions and then to the corresponding univariate concept on the

7 one hand, as well as to (various generalizations of) multivariate hazard
5.v

measures on the other. Following the approach adopted in KSh (1980) for

the univariate case, we do not restrict ourselves necessarily to non-

negative random variables. (The notions of the hazard measure as well

*o as that of the e.r.l. functions in the literature are usually limited

to the non-negative case.)

Most of the groundwork as far as the convergence and representation

theorems is concerned has been laid in KSh (1980). However, in the pre-

sent paper we clarify, using examples of specific distributions, some

ambiguities and certain inconsistencies related to the structure of

various characteristics of multivariate distributions in our search for

the most meaningful and practically attractive expressions and repre-

sentations of these distributions which would expose the hidden depen-

dencies among jointly distributed random variables. These findings could

prove to be of some significance in future developments at least in areas

such as reliability and pattern recognition.

2. A GENERALIZED MULTIVARIATE HAZARD GRADIENT AND A

MULTIVARIATE GENERALIZATION OF THE e.r.l . FUNCTION

In this section, we shall give, among other things, two theorems

that follow as direct corollaries of KSh (1980). These concern respec-

tively a generalized multivariate hazard gradient and an analogous

04
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multivariate generalization of the e.r.l. function.

For multivariate distributions, there exist in the literature

basically two approaches to defining hazard functions, both confined

predominantly to absolutely continuous distributions on Euclidean spaces.

The first definition, adopted and analyzed by, among others, Basu

(1971) and Pur and Rubin (1973), is a straightforward extension of the

univariate concept. (A purely discrete case was also considered by Puri

and Rubin (1973).) The hazard function of a random vector X = (X1 ... Xp

is defined in this case to be a real-valued function r on {x: F(x) > 0}

with values
." *.

r(x) = f(x)/f(x),

where x = (x1 ,...,x) e RP , f(x) is the probability density function, and

F(x) is the survivor function given by

-F(x) = P(X > x).

(Here as well as in what follows the inequalities for vectors are to be

'-"-_understood componentwise.) This concept was further discussed by Block

(1977) where additional closely related variants were proposed, and

treated in a somewhat more unified manner in Galambos and Kotz (1978).

We intend to generalize this definition and examine it in greater detail.

However, since our contribution in this case is to be rather substantial

without relying very heavily on KSh (1980), we shall deal with it sepa-

".% rately in the next section (i.e., Section 3 of the paper).

The second approach, due to Johnson and Kotz (1975a) and Marshall

(1975), defines a multivariate hazard gradient (in an absolutely con-

tinuous case) as the vector-valued function h on {x: "t(x) > 01 with values

h(x) - - -- )log -F(x)

- -grad log F(x)
.. g
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(except for a set of Lebesgue measure zero). As was shown by Marshall

(1975) in the absolutely continuous case, the vector-valued h uniquely

determines the probability distribution function (d.f.) or equivalently

the survivor function. Note that each one of the components of h(x)

depends in general on all the variables xi(i = 1,2,...,p). In the first

5-.-% part of this section (i.e. in part a) we shall generalize the gradient
-_.5.

h to the case of arbitrary d.f.'s and at the same time reduce some re-

dundancy existing in the structure of the components of this gradient.

The main result involving a representation given in this part subsumes,.

1 Marshall's (1975) result and is essentially a corollary of Propositions

5 and 8 of KSh (1980).

In KSh (1980) - motivated by the remark contained in Shanbhag

(1970) and the results of Hamdan (1972), Kotlarski (1972), Shanbhag

and Bhaskara Rao (1975) and Gupta (1975) - we also extended the con-

cept of the e.r.l. function of a positive random variable to an arbi-

trary random variable and have given a representation for a probability

distribution in terms of this function. Some possibilities of the

applicability of the concept in practice have been indicated in KSh

(1980) and the references cited above. (Also, see Hall and Wellner

(1981), Hollander and Proschan (1984) and Glanzel et al (1984) for

further information and references on the e.r.l. function.) A variety

of multivariate generalizations of this function can of course be con-

structed. However, we intend in this case to deal only with a certain

construction that has features closely resembling those of the multi-

variate hazard function of the present section. The representation

"" theorem in this latter case follows as a corollary of KSh (1980). In

view of the prevailing analogy, we shall devote the second part of this

O 5
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section (i.e. part b) to discussing this particular version of e.r.l.

functions and revealing some of its properties including the aformentioned

theorem. For a related but independently carried out investigation of

multivariate analogues of e.r.l. functions, the reader may wish to

consult Zahedi (1985). This work is however along different lines.

a. A generalized hazard gradient and some of its basic properties.

Let p > 2, F be a d.f. on Rp and X = (X 1 ,X2 ,... ,X p) be a random vector

distributed according to this d.f. Let (i) with x(i)

(xi ,Xs+1 ,...,x ,X x( )  x denote the hazard measure on for the

conditional distribution of X. given that X > x i+ . Xp > Xp

(as stipulated in Section 4 of KSh (1980)) for every x(i+l) e RP  and

i = 1,2,...,p-l. (We define the conditional distribution to be arbitrary

for any conditioning set of measure zero.) Also, let vP)(.) denote

1the corresponding hazard measure on R for the marginal distribution

-.-. of X . Extending and modifying the definition of Johnson and Kotz (1975a)

and Marshall (1975), we call the family
" "{VF ('Ix(i+l)):x(i+ ) e R 1, i = 1,2,.. ,p-U} % ) (.

the hazard gradient relative to the d.f.F. We have the following theorem

which is essentially a corollary of Propositions 5 and 8 of KSh (1980)

(see, also, Cox (1972)):

THEOREM 1. The survivor function corresponding to F is represented by

-(x) : P(X>x) n {[ fl -
- - - i=l yiFDi(x Fi

x exp[-v (c 'i)((- -,x ]jx (i+l))j , x e Rp (2.1)
F ~

and for a continuous F the representation is

0Z
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.(x) exp- m ()((--,xi]Ix )}, p

= l F- F )-eix p) )- x e R , ( 2 .2 )

where the notation v P)(.ix(p+l)) is used for convenience to denote
(_" p)( -

V ("), e is defined to be zero, D (x i) is the set of real points
Fi (i

Yi < xi at which vMFi)((Y }!x(i+l)) is positive, and vF 'i(.x()) the(i)(.Ix ) F tem r ifF s

continuous (non-atomic) part of M(F (x(i+l)).

continuous and {F n=l,2,..., } is a sequence of d.f.'s on Rp, then

using the same notation

'x I" I(i)+1((--,xi I x j j ) (2.3)
ni +11

for each x such that F(x) > 0 and i = 1,2,...,p if and only if {Fn}

converges to F.

Proof. (2.1) and, if F is continuous, (2.2) follow immediately from

Proposition 5 of KSn (1980) in view of the relation

p-l
P(X > x) = P(X > x ) i > p

- - p

x e Rp . (2.4)

if F is continuous, then the marginal distribution function of X is

p

continuous and for every x such that T(x) > 0 and i = 1,2,..., p-l, the

conditional distribution of X. given X > x ,X > x is continuous.
1 - i+l p - p

Also, if "Xn) n ) for each n > 1 is a random vector dis-

tributed according to F , then for each n > 1
n

-(jn) x) (n) P-1 (n) (n) (n) x )
- = > x E P(x. > x l > . xX-' - ~ - P i'l 1 1 1 + - Xi l. .

x p p. (2.5)

[0- .

[ .-...
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Applying Proposition 8 of KSh (1980) to the survivor functions on the

r.h.s. of (2.5), it can be easily verified that the convergence part

of the theorem is valid.

Remark 1.

For absolutely continuous distributions, representation (2.2)

reduces to that of Marshall (1975). Both (2.2) and (2.1) are thus

extensions of Marshall's hazard gradient representation. moreover,

the general representation for purely discrete distributions follows

from (2.1) in the obvious manner.

Remark 2.

The "convergence" pdrt of Theorem 1 fails to be valid if the

Sassumption of continuity of F is omitted. Examples 1-3 presented in

KSh (1980) following Proposition 8 in Section 4 are sufficient Lo

illustrate this situation.

Remark 3.

The hazard gradient obviously has other versions when the ordering

of the variables is altered. Under a specific situation, one may find

a particular version to be the most natural and easiest to handle. In

that case, we shall of course consider the corresponding ordering to be

the one implied in our Theorem 1. A similar remark applies to the result

of Theorem 2 below.

Rema rl -1,

The following observation related to univariate hazard measures

may be appropriate at this point. (See also the beginning of Section 4

of Kh (19,0).) If G is a d.f. on , then according to representation



84.-

(4.1) in KSh (1980) either
T ( 1 (= 0 o r H )

x eD lG {r} c

where vG is the hazard measure corresponding to G, D is the set of dis-

continuities of ((--,X]), V beinq the continuousG c G G

part of v G Whenever the right extremity of G is not one of its dis-

continuity points, we have vG({X r1) < 1 for all x r e D. Now the Borel

zero-one law and relation (16) given in Burrill (1972), p.245, imply

that 7 (I -({x}) : 0 if and only if D G({Xr}) = provided
X EDG r x rr r

V G({Xr}) < 1, xr e D. This leads us to the relation

.= G({X}) + H ( (2.6)
; -.'..x eD

whenever the right extremity of G is not one of its discontinuity

points. (This result was obtained earlier by Shanbhag (1979) using

S- ' a somewhat different argument.)

Pemark 5.
S., As a corollary of Theorem 1, it follows that the components of X

are indeoendent if and only if there exists a version of the hazard

g().x, ,)) is independent of x~i+,) for

each i = 1,2,..., p-l. The theorem also yields several other interesting

corollaries. In particular, since the theorem also implies that every

distribution on Rp is characterized by its hazard gradient, one could

* obviously use it to give further characterizations of distributions,

such as the Marshall-Olkin bivariate distribution or Frechet's multi-

variate distribution with continuous marginals or a multivariate Pareto

.- distribution, for which the hazard gradients are of a particularly

appealing form.

'p ' ,' . ._ ' % " q " " " '" ' " " " " w
'

" - ''' ' " ". . . ".. " " " ". . .
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b. The generalized e.r.l. function and some relevant comments.

In view of Proposition 3 of KSh (1980), (2.4) in the proof of

Theorem 1 above implies that under some mild assumptions there exists

a representation for the survivor function of every p-component random

vector X = (X1,...,x ) in terms of the conditional expectations

.- ( ! > .IX > x ,x )e RP - i + l of monotone trans-EX - 1 p xp

forms hi, i= 1,2,...,p. This is given by the following Theorem 2.

The theorem yields, among other things, that if X is a random vector

with E{Xi} < - for all i = 1,2,...,p (where X+ = max(O,X then the
1 1

conditional expectations E{X C x !Xi > xis ... 9X > x 1p i
pp"---i.;' " x(= (xI ...,Xp)) e Rp (and hence E{X-xJX > x}, x e Rp) characterize th

distribution of X; the representation in this latter case is aiso ob-

vious now. Since the family of expectations {E{Xi-x.IX i > xi,...,Xp> xD}:

i = 1,2,..., p, x e RP} avoids some of the redundancies existing in the

function E{X-xlX > xi, x e RP and has all the obvious requirements of

an e.r.l. function, it would be reasonable to adopt it to be the e.r.l.

function of a multivariate probability distribution on Rp .

THEOREM 2. (A representation theorem). Let X = (X1  X ) be a random

vector with p components and hi , i = 1,2,...,p be real-valued non-decreasing

functions on the real line such that Efh (Xi)} < for all i =1,2,...p

(where h+(Xi) = max{',h (Xi)})" If hi, i = 1,2,...,p, are such that

hi(x.) < Efhi(XIX i > xis X > xi+ 1 .... > x I whenever PX' >
1~ 1 111 p - p 1

X. > xi+ 1 ....X > x > 0, then the survivor function corresponding
11i+l p - p

to X is given by

P(X > x) = G(x), X( (X 1  ... X ) ) R (2.7)

04
-- ,"1- ' . .. ' ~ P '
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where G is the left continuous function satisfying

0 if x. > b. for some j > 1 & < p

G(x) = 1 lrn 9 l(l+fl)( { g (z dhI~c) (z)pf

if x < b' for all j > 1 & < p (2.8)

in which D(i) denotes the set of discontinuity points of h. in

[y.,.),h~c) denotes the continuous part of h. (i.e. of its right contin-
1y~ I1 1

uous version), Xci) (Xi, ... Ix
p

gi(x(n) = E{h h(X )Ij > } -~ h (x.-),

1 1 x(i) (h~) h i ,(il

* 1ZxI. [i +ZxilJ-~- M~z-) 9iZ -( ~) (2.9)
Igi(zxil)eg~(+ X~i ))+ (hi(z+ - hiz)I gi(z,X~~. +7)

if {y: lrn E{h.(X.)lx(,. > x.}) exists and < h.(y)} is empty

and b.
inf{y: lim Elh (Xi)~i x exists and < h ~Y}otherwise

'ftt

with X =(X., ...X I .

-M

SiA



I* 
11

. '

(The conditional expectations are defined arbitrarily when the condi-

tioning sets are of measure zero; also (2.8) and (2.9) in the statement

above are to be read without x(i+ ,) in the case of i = p.)

Remark 6.

In view of Theorem 3 and the information given in the Remarks in

Section 3 of KSh (1980), it is possible to present several extensions

and variants of Theorem 2 given above.

a'..

Remark 7.

If h.'s in Theorem 2 are assumed additionally to be continuous,

then the representation (2.7) with Gi's given by (2.8) without the term

{ ii gi(z,x( )} and with h!C)'s replaced by hi's is valid.

Remark 8.

If hi(i = 1,2,...,p) of Theorem 2 are taken as strictly increasing,

the representation (2.7) for a survivor function is obviously valid in

the case of every distribution satisfying the integrability condition of

the theorem. One may be interested in seeing whether there exists a

representation for the survivor function for X in terms of the conditional

expectations corresponding to a fewer number of functions, which are

appealing in some sense, at least when the domains of the definition of

hi are taken as Euclidean spaces with hi(X i ) considered above replaced

by hi(X(i)) X(i) being a subvector of X. However, it is not difficult

to see that in general merely with the integrability condition such a

representation does not exist. This could be verified by noting, for

example, that if h., i 1,2,...,p-I are given to be real-valued Borel

ex.l , h t i h i . ., . - C ~ -
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measurable functions on Rp, then there exist random vectors X and Y

with distinct distributions having a common support (such as {(0, ),

(0,. O,l))) such that

E{hi(X)IX > x) = E{h. (Y)IY > x} for all x e RP and i = 1,2,...,p-1.

Remark 9.

Prakasa Rao (1974) has essentially attempted to solve under some

constraints the problem mentioned in Remark 8. He has given in this

context a uniqueness theorem in the bivariate case under certain assump-

tions. The following example shows that the theorem is not valid.

2
EXAMPLE 1. Define h to be a real-valued function on R such that

2 1
h(x,y) = (-e -x )E(y), x,y e R

where

c ify <y<

c + ___- if 1 < y < 2
c +". (3-y)3

-(y) c + y-2) if 2 < y < 4

N,' (y-5)3 3f4
-. c + 2 + 6 if 4 < y < 5

c + 2 if y > 5,

where c is a positive number. Alternatively, one could consider the h

with a slightly more trivial situation of c for c 0. Let (X,Y)

and (ZW) be random vectors with absolutely continuous independent non-

negative components such that X and Z are identically distributed but

* the distributions of Y and W are not identical. Also assume the random

vectors to be such that their marginal distributions have all left ex-

tremities to be equal to zero and

•.-. P(Y < 1) P(W < 1), P(Y < yjY > 1) = P(W < yjW > 1) for all y > 1.

II
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Observe that all the assumptions in Theorem 2.1 of Prakasa Rao (1974)

are satisfied with x = Yo = 0. Moreover (X,Y) and (Z,W) satisfy

Prakasa Rao's stipulation (2.0). However, in this case, the conclu-

sions of the theorem are not valid. (It is obviously possible to

illustrate this point by other examples of a similar nature.)

Remark 10.

In view of Theorem 2, characterizations based on e.r.l. functions

are now obvious for the well known distributions such as the Marshall-

Olkin bivariate distribution, the Farlie-Gumbel-Morgenstern distri-

* bution discussed in Johnson and Kotz (1975b), Gumbel's bivariate ex-

ponential distribution, the multivariate Pareto distribution and several

other multivariate distributions appearing in Johnson and Kotz (1972).

One could also apply the theorem to arrive at further characterizations

based on conditional expectations for distributions such as Fre'chet's

and those discussed by Krishnaiah (1977). The following example may

serve as an illustration of this point.

EXAMPLE 2. (Fre^*chet's bivariate continuous distribution).

Consider F to be the continuous d.f. on R2 such that the corres-

ponding survivor function is given by

F(xl ,x2) = min{l-F l(x1 ), l-F2 (x2)}, (xl ,x2 ) e R
2

with F1 and F2 as univariate d.f.'s. Clearly, since F is assumed to

be continuous, we require F1 and F2 to be continuous here also. Define

hi(x i ) = (Fi(xi)) ),x eR i 1,2,

where 0 < a. < and fixed. Then it follows that if X =(X l,X2) is a

, random vector with d.f. F, we have for every x(=(x i  2 e and i 1,2
-"ad 1

Oe
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E {hi(Xi)IX > x)

.l . {l-(G(x)) 1 l-G(x)} "  if G(x) < 1

1 if G(x) = 1,

where G(x) max{Fl(X), F2 (x2 )}. (On the set {G(x) = 1), one could

also define E{hi(Xi)IX > x} differently.) Obviously, given a. and F,..-. 1 - -

{E(hI(X 1 )[X1  > 2  > x 2), E(h2(X 2)X 2  > x2): (XlX 2)  = R
2) character-

izes the distribution considered above among all bivariate distributions.

(This distribution has several other interesting characterization proper-

ties also, the recent characterization based on discretized Shannon en-

tropy given in Bertoluzza and Forte (1985) being one of these.)

.3. EXTENDED VERSIONS OF THE RESULTS OF BASU AND PURI

AND RUBIN DEALING WITH THE HAZARD FUNCTION

We shall now discuss a rather substantial generalization of what

is known in the literature as the "scalar" multivariate hazard function.S.s

Let, as in the previous section, F be a d.f. on Rp, X be a p-component

random vector with this distribution and F be the corresponding survivor

function. Denote by PF the measure determined by F on (the Borel 7-field

B of) Rp. Since, in the multivariate case, we can have an F such that

' F{X: F(x) = 01 > 0, (e.g., if we take F to be continuous such that

F PF X(=(Xl . n )): x = -x2 I = 1, we obtain P (x: -(x) = 01 = 1),

the definition of a hazard measure in KSh (1980) is not extendable as

it stands. However, if we restrict ourselves only to the set C (say)

of distributions F for which T(.) > 0 almost surely [P F , the definition

%,'

AOl
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in KSh (1980) of a hazard measure admits an obvious extension. Supoose

then that F e C and define vF to be the scalar hazard measure on Rp

given by

VF(B) = T l dPF(x) for all B e B (3.1)F B F(x) P"

The integral on the r.h.s. of the equation can be written following

the accepted convention in the literature as f dF(x).fB -(x) -

In the cas- when F is an absolutely continuous d.f. with respect

to the Lebesgue measure on RP , v F also possesses this property and thus

the Radon-Nikodym derivative becomes the hazard function, studied by

earlier authors, a.e. on {x: 0F(x) > } It follows from the investiga-

tions of Basu (1971) and Pur and Rubin (1973) (see also, Galambos and

Kotz (1978)) that the measure v F does not in general determine uniquely

the distribution F. Consider then V F to be the set of d.f.'s on Rp

that are members of C having the same scalar hazard measure as F. Clear-

ly the set V F defined herein is convex although not necessarily closed

relative to weak convergence.

Consider now the set of all d.f.'s on the compactified Euclid-

. ean space 1 -.,c]P. There exists a normed linear space of which this

is a compact subset with the corresponding relative metric as a metric

of weak convergence. Then, as a further subset of this compact

set, the closure -F of the set VF is also compact. (For simplicity

we abuse the notation slightly here and elsewhere in this section by

denoting the set of all d.f.'s on [--,-]P which are extensions of

members of F also by F.) Since F is also convex, Choquet's theorem

F F F
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(cf. Phelps (1965) page 19 and also Kendall (1963)) implies that each

F PF can be represented as the centroid or barycenter of a probability

measure on the Borel a-field of the linear space which is concentrated on the

set of extreme points of VF" In general, the problem of obtaining the

*, extreme points of VF or merely of tF seems to be a difficult one and

we have not as yet obtained any positive information in this connection.
.i .,j

However, through a theorem and two corollaries to follow, we shall

provide some valuable information concerning the problem of characteriz-

ing F on the basis of vF. This gives, among other things, the Poisson-

Martin representation for F in terms of vF when F is continuous and a
0F

more natural extension of the univariate hazard measure to the multi-

variate case than the hazard gradient of the last section, possessing

the uniqueness and stability requirements.

Before discussing our main results of this section, the following

instructive examples making some specific points are worth revealing.

EXAMPLE 3. Let

pp
F(x) 11 F.(x.), x (X,...,x R

where F. are continuous d.f.'s on R Then appealing to the result

of Pur and Rubin (1973) or our observation above concerning a repre-

sentation for the members of D we can easily see that each member

F F V F has the following form:mF

(x Jp i=l 1 (dGW, x F R (3.2)
iii

where G is a d.f. on Rp such that the corresponding measure is concen-

!. lV
.................. - A- P . *-,
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p
trated on the set : x. > 0, i = 1,2 ,...,p, 1I ). Also, this

1 i=l

can be seen via the Poisson-Martin integral representation given for

the members of D in Corollary 1 below. Incidentally, in the present
F

case, the extreme points of VF are given precisely by the d.f.'s F of

the form

. p
F (x) = F {l-(Fix)) x e Rp-" i=l i-,

p
with x > 0, i = 1,2,...,p and T A. = 1 and any extreme point of V

, F

is either an extreme point of VF or a d.f. on [-=,c]P which is the

weak limit of a sequence of extreme points of 0F. Looking at an arbi-
*F

@ trary member F given by (3.2) in the case of p > 2 for VF' we observe
-*

a curious property of VF that if F e VF and any p-i of the p univariate
F F

marginals of F agree with those corresponding to F, then F = F. In

other words, we have in this case that if a d.f. on Rp has p-l of its

univariate marginals precisely the same as those corresponding to F and

its scalar hazard measure on RP is defined and is given by vF1 then

this d.f. has to be F. Since every univariate d.f. is uniquely determin-

ed by its hazard measure, we could also restate this property using

only hazard measures. (For some recent advances connected with the re-

sults discussed herein, see Lau and Rao (1982), Rao and Shanbhag (1986)

and Davies and Shanbhag (1987),)

EXAMPLE 4. Let p > 2, k be a real number and S be a countable subset

of Rp- . Also let r denote the set of d.f.'s on R that are concentrated

on S giving a positive probability mass to each point of S. For each

r. G e G, let FG denote the d.f. on RP which is concentrated on

G
{x: x e Rp , .x = k} with

-p._
0l

9,,°

V
'.".- .- ''" "" "#'.""." " ',4. 

•
".- ".'o~.- ," . .' % '''''r'''- " "-' ' w'"

"
" ," w.°'°% ,.-.'.'-. .' '. 2-.



C ...

FG(x ... 2xl, ) = G(xI ,...,x p l-), (x 1 ,...,x p _1 ) e Rp - I

(in the usual notation). It is easily seen that here v F are all (well

defined and) identical. If we now consider p > 4 and any of the FG'S

to be F, then it is clearly seen that the condition that F e DF does

not imply F : F even if it is given that F has all of its univariate

marginals or bivariate marginals to be the same as those of F. However,

for the F in this example, the condition that F e 17F together with

F (x,...,Xp 1,) = F(x I ... ,x -ln ), (xl ... 9xp-1 ) e R

implies that F = F. Note also that here we have the set of extreme

points of F to be empty and the set of extreme points of V to be the

closure (relative to weak convergence) of the set of the degenerate

d.f.'s on [-c, ]P that are concentrated on {x: x : RpIxi = k); clearly

now the situation of the last example that each F 6 V. has an integral

representation in terms of the extreme points of VF is not valid.

In spite of certain isolated cases, such as that of Frechet's dis-

tribution of Example 2 or of a d.f. F that satisfies for some b 6 Rp

the conditions F(b) = 1 and T(b) = PF({b}) > 0, in which the F is char-

acterized by v F9 it now follows that, in general, unless at least one of

the (p-l)-variate marginals of the distribution (or something equivalent

to it) is given, v F does not characterize F. One might then be interested

to know whether F is characterized by vF given any one of the (p-l)-variate

marginals. Our attempt to answer this question has been only partially

successful so far and the findings of this investigation are presented,

C- .among other things, in the following results.

We are now ready to give our main theorem of the section together

with the two of its interesting corollaries. (The reader can find some

-a- analogy between the proof of the theorem given here and Seneta's (1981)
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proof of the Poisson-Martin integral representation theorem for a super

regular vector corresponding to a non-negative matrix.)

THEOREM 3. If F e VF and, for each i = 1,2,...,p, we have (in the

standard notation)

F (x 1 , .... xi_ 1 , ,  x 1 , . . . % = F(x1,...,x. _1 ' xi 1 I. . . xp)

for all x. e RI , i = 1,2....i-l,i+l,....p, (3.3)

-'V then F = F. Furthermore, given an F e OF' there exists a probability

measure p on the set of all d.f.'s, G on - such that

F (x) G(x)du*(G), x e [-co]P, (3.4)

where vJ( ) = 1 and K is the closure (relative weak convergence) of the

set of the d.f.'s Kt(-) for t such that F(t), -(t) > 0 (F being the sur-

vivor function of F as in the last section), where each of the Kt() is

defined to be a d.f. on [-',=]P such that it is the degenerate d.f. at

t if P ({t}) = F(t) and the d.f. satisfying the following otherwise:
F

k(x,t)
K (x) = - x e (-=,t] (3.5)t k(t t) -

wi-th

r-k(y,t) = (y) + L . dv (Yn) .d) y~S tF .F

k2. t " n=l (-,'Y) J Yl ' t ]  Y1n- ' t  " "

A (.) being the d.f. degenerate at t. (The proof of the theorem asserts

that Kt(.) is well defined.)

Proof. In view of Fubini's Theorem and relation PF(B) F(×)dvF(XF B F

.. .. ..' V.'... .%
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for every Borel subset B of Rp , we have for each t such that

F(t) > PF({t}), n > 1,

a t]. r J~< ... d . .F(Yn) dv F( y

T(t) J(co tiiy,tJ [f -'' - F-n..v~tt [Yl Yn-I t]..

n-i n-iat at

is~~~~ t) {(dvot FJ = 1 ()F( (3.6)

where at + - PF({t)) < 1, since a t > P(ldt _ Ft)/,(y)

for y < t. (3.6) establishes, among other things, that K () in the state-
- - t

ment of the theorem is well defined. Now, for each d.f. F on Rpsuch

that F* V Fand t as in (3.6), we have, in view of relation P (B) =
.-. -F R

f 'F*(x )dvF(x) with B as an arbitrary Borel set and F as the survivor

function corresponding to F

= t) + (-I)PP ,((-,t))

= t) + (-l)pJt (x)djF(X)

'(t) + (12PJ P (( -,x))dF(x)
-4i€ F

.5.,J
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= t) + (-1) +l)p r f

d~F x ... .dvF(x) n > 1, (3.7)

where the sequence { (t): m 0,l,...}(for each given t) is such that

it depends only on v F and d.f.'s F(x,..9iSM' l..xp

(x1, ... 9x i 1 9 x. ,+...,x p) c R , i = ],...,p. It follows trivially

from (3.6) that the multiple integral on the r.h.s. of (3.7) tends to

zero and n - .This in turn implies that the sequence j (t): n =12..

in (3.7) converges to -F(t) and hence we have that if (3.3) is valid,

then

= (t) for each t such that T(t) > PF ((tW. (3.8)

In view of the left continuity of F and F* and the fact that {x: x 4ER

VFx) = 0} (x: x e Rp, 7 *(x) = 01, we can conclude that if (3.8) is

valid, then we have F* = F or equivalently F = F. This establishes the

fi rst part of the theorem.

To establish the second part of the theorem, define

f t: t P- R, F(t), ft 1

Bo = (t: t E Rp ,T( t) P Pt)) > 01,

and B t: t B F~t) PF(,t!) + 1 1,m
and F {t Ft)m=2..

If F F F9 then by the monotone convergence theorem, we get

~~~~ (x ~(y)dv (y)

(X Fx=) .

- B~ (xdPF*9+4 T t(x)T*(td) (t), x R (3.9)
0 i
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Now, for every m > 1 and t e B, a of (3.6) is bounded by m/(m+l)

and hence it follows from (3.6) that k(t,t) is bounded on B for each
mC

m > 1. Also, if we define 'K(x,t) = k(t,t) - k(x-,t) for each t e B n BC

and x e RP (with this to be zero if x $ (--,t]). Fubini's Theorem

implies that for each m > 1 and x e R6

; "" I I(x't)-F*(t)dvF(t)

m

.B.t(x)- (t)d'F(t) + J (x,t)P *(Bm(t))dvF(,. (3.10)
-- B ~ ~ ~ B ~"F " "

m m

where B (t) = [t,-) n B . Observe that (3.10) follows easily from the
m m

relations:

Vlx,t) =-At(x) + j ... dV (Yl)...dvF(Y) ,

) n I ~ nl f x,tI x ,y] x,Y2] "F. n

. < x t, t B r Bc
and- - - 0

and

"-F(t)dvFt) = P )(Yn B n Bo , m,n > 1.
:. B(y n ) - F *B n n0

From (3.9) and (3.10), it consequently follows that there exists a

sequence Um : m 1,2,...1 of measures on R such that om(Rp ) - 1 for

all m and

F- (x) = lim )dlm(t), x 6 Rp , (3.11)

which in turn implies that fpm(B)} converges to 1 and hence that there

exists a sequence (pn of probability measures on RP for which (3.11) is

valid. Since K is compact, using Parthasarathy's (1967) Theorem 6.4,

04
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C',t *
it can then be easily seen that there exists a probability measure P*

on K such that

T(x) = f(x)dp (G), x e R

Since PF is the closure of VF1 a further application of Parthasarathy's

Theorem yields the validity of the second part of our theorem.

The following two corollaries of Theorem 3 are easy to prove:

COROLLARY 1. (The Poisson-Martin representation): If F is continuous,

then we have a d.f. F on Rp to be a member of 0 F if and only if it has

a representation

F(x) G(x)dw(G), x g Rp

for some probability measure 1 on Kp n P. (In the present case, we also

have K ) 0F to be a set of the space of all d.f.'s on [--,-]P.)

COROLLARY 2. The hazard measure v F jointly with the hazard measures

relative to all the univariate and multivariate marginals of F determines

F uniquely. (This corollary can be verified by induction.)

Remark 11,

It can be noted that the result of Corollary 1 does not remain valid
,.

if the assumption that F is continuous is dropped. Also, in view of what

d we have observed, it can be concluded that if F is continuous, then we

have the set of extreme points of 0F to be a nonempty subset of J and

each F e OF to be the barycenter of a probability measure that

is carried by the set of extreme points of OF.

J.,

5,

,0
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Remark 12.

The finite collection of hazard measures given in Corollary 2

appears, in spite of the restriction that F e C, to be a more natural

multivariate analogue of the univariate hazard measure than the hazard

gradient of the last section. A stability theorem for the collection

is valid when F is continuous, as is shown by Corollary 3 of the next

section.

4. A STABILITY THEOREM

*- , We conclude the paper by proving and commenting in this section on

a general stability theorem for probability measures on metric spaces,

which yields, among other things, the two stability propositions in

KSh (1980) as simple corollaries. The proof of the present theorem uses

Prohorov's (1956) and related theorems in Billingsley (1968) dealing

with the convergence of probability measures. It might be instructive

to compare this with the proofs of earlier stability propositions in KSh

- -' (1980). The techniques used for proving the theorem here are indeed of

a more global nature than those which are sufficient in the case of

probability measures on the real lice.

Now, let S be a metric space, T an index set, $ the Borel a-field

on S, p, P 2 ' p3 families of probability measures on (Ss), {At: t e T}

a family of collections of sets with At c for every t s T, and

{h('It,At,P): At r At , P e P, t e T) a family of real-valued Borel

measurable functions on (S,$) satisfying the following conditions in

which the notation D(t,At,P) stands for the set of discontinuity points

of h(. t,AtP)o

A.
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(i1) P1  p2 ' P3 c P, also P2 is closed (under weak convergence),

(ii) I1' p P)3 ' .. and [P n _U converges weakly

to P * p h(.It,At,P ) h(.t,At,P) as n-* uniformly almost

surely [P ] on At n DC(t,At,P ) and

sup E(I){Ih(.It,At,P 1)) 11At (1) 1} - 0
n>l n n lh(.It,AtP n

as for each t F T and P *-continuity set At inAt with P*(At) positive,

(iii) p(2), p 2) 6 2 and are distinct = there exist t F T and At 6 At

such that P 2)(At), P ((At) are both positive, At is both P(2 -continuity

set and P 2)-continuity set and

2pi E ()hC'It,AtP (2) )JAt E 2)h(-It,AtP (2) )JAt }

2"' 1 2

and

(iv) p(3) e P3 - D(tAt'P(3)) has zero P(3)-measure for every t in T

and p- continuity set At in A t .

Further, let P e P and [P : n > 1U be a sequence of members of P1

such that (P n = 1,2,...} is relatively compact. Then we have the

following stabi ity theorem:

THEOREM 4. (a) The condition that

P 6 P3' {Pn: n > 1) converges weakly to P (4.1)

implies that

Ep h(-It,At,Pn)JAt} -1 Ep{h(.It,AtP)IAt} (4.2)P-. nn t

as n - for every t e T and P-continuity set At GA t with P(At) > 0.

N Moreover, (b) if additionally P, P1 9 P2 9 ... 6 P 2 and the set of cluster

points of P n: n = 1,2,...) (relative to weak convergence) is a subset

n
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of P3V then the converse assertion is valid.

Proof. Assume first that (4.1) is valid. Since P e P 3, it is obvious

that the set of discontinuity points of h(.It,At,P)I At has zero P-measure

for every t e T and P-continuity set A e At. Now, let t e T and P-
t t

continuity set A 6 At be arbitrarily fixed. Since Pn 6 Pl. n > 1, the
t n

requirements of Billingsley's (1968) Theorem 5.5 are clearly met with

h('(t,AtP)IAt as h and h(.ItAtPn)IAt as hn. This theorem implies

that {P h , n = 1,2,...} converges weakly to Ph- . If we now consider
n n

Xn, n > 1 and X to be some random variables having distributions Pnhn

n > I and Ph- respectively, we have {Xn: n = 1,2,...} converging to X
in distribution. Also, the fact that P e p' n > 1 implies that

n -

{Xn: n = 1,2,...} considered here is uniformly integrable. Since

Billingsley's (1968) Theorem 5.4 yields that E{X } E(X} as n - in

such a situation, we can conclude that

Ep {h(. t,At,P n )ItA EP{h(.It,AtP)IAt I as n - . (4.3)

In view of the assumptions that {P I converges weakly to P and At is a
n

P-continuity set, it follows that P (A t ) - P(A t ) as n - . If P(A ) > 0,n " t'

we have (4.2) then as an obvious consequence of (4.3). Hence we have the

first part of the stability theorem to be valid.

To establish that the second part of the theorem holds, assume that
P, P1, P . and the set of cluster points of {P n: n = 192,...)

is a subset of P3 and also that (4.2) is valid. Since each cluster point

of {Pn: n = 1,2,..) is an element of P3 and {Pn n 1,2,...} is rela-

tively compact, we should have a subsequence {Pn : r = 1,2,...) of
>- r

{P n 1,2,...) converging weakly to Q e P3 with Q # P unless (4.1) is,::;:n 3°

,-:-
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valid. If Q denotes the (weak) limit of a subsequence of {P n},

then clearly we have Q e V3 and hence the first part of the theorem and

the validity of (4.2) lead us to

Epth(ojt,AtP)IAt} = E *{h(-It,AtQ )JAt} (4.4)

for every t e T and A F A such that A is a P-continuity set with
S t t t

P(At) > 0 as well as a Q -continuity set with Q (At) > 0. We have assumed

that P e P2 and for each n > 1, Pn e F2 and also we have P 2 to be closed.

In that case, we have P,Q e V2 and hence, in view of (4.4), Q = P. It

is therefore impossible that (4.1) will not be valid. Hence we have the

second part of the theorem.

Remark 13.

In the case of h(.lt,At,P) being independent of P, obviously the
part of condition (ii) that h(It'At(1)n h('It'At'P uniformly

almost surely [P ] on At - DC(t,At,P*) for every t e T and P -continuity

set At with P (At) > 0 is trivially met. Also, if h(.It,AtP) are all

continuous, then the condition (iv) above is obviously satisfied with

V3 = P. If S is a Polish space or in particular, if it is a Euclidean

space, we have a sequence (P n n = 1,2.,...) of members of V to ben

relatively compact if and only if it is tight in the sense of Billingsley

(1968: p.37) (cf. Theorems 6.1 and 6.2 in Billingsley (1968)). Thus, it

is evident that in various specialized situations, the theorem given

above has simplified and perhaps more appealing versions.

Remark 14.

4 If the stipulation "the set of cluster points of P n: n = 1,2,...)

is a subset of P 3" is replaced by the weaker stipulation "the set of

V,3
aNL
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cluster points of the range of (P n = 1,2,.... is a subset of P 3n 3'

.-. Theorem 4 still remains valid provided we also replace "the converse

assertion is valid" by "(4.2) implies that {Pn: n 1,2,..) converges

weakly to P.

Remark 15.

To illustrate that the stability theorem just proved does not remain

valid if the assumptions P e P3 and the set of cluster points of

{P : n = 1,2 ...} is a subset of P3 respectively appearing in the two

parts of the theorem are omitted, it is sufficient to consider the

following example:

EXAMPLE 5. Let {x n 1,2,,..) be a sequence of strictly increasing,

n

real numbers converging to a real number x'. Let x" be a real number

greater than x' Define P, P', {P : n = 1,2,...) to be a sequence of

probability measures on the Borel o-field of R1 such that for some

' " a if x - X

P ({x } ) = n
n1 - c if x x

P({x}) { ji if x = x'

- L if x = X"

and

d -

' l._.,°i x# =Cx,

P I( x f ox ( -c
,-.'. - _' i if X x ' X ,

.IO where c and d are given real numbers such that c < d and {a(d-c)/(x"-x'))

< 1 - " Also, define h on R such that

c if x < x'h(x) =
d + (x-x') if x > x''.

,j ~ A
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If we take T the singleton {l}, Al = -',x): - < x < x' ,*

P : {P,P',PI,P 2 ... } and h(-1I,A,P ) = h(-) for every member A of A1

and P e P, then it follows that P itself ,atisfies the requirement
V..

of P1 and P2 mentioned above. However, in this case we cannot have

a nonempty subset P3 of P satisfying the condition (iv) as required.

". Consequently, it follows that in this example neither the requirement

of P e P3 nor the requirement of the set of cluster points of

P n: n = 1,2,...} being a subset of P3 is met. Observe that here

{P n = 1,2,...} converges to P weakly, P # P' and (4.2) is not valid

(since Ep {h(.)IA} 4 E ph(-)IA} whenever A : (--,x) with x < x') butIII n

(4.2) with P replaced by P' is valid. This implies that with the de-

letions mentioned above neither the first part of the theorem nor the

second part remains valid.

Theorem 4 has several interesting corollaries. In particular it

yields that if a characteristic property exists, based on conditional

expectations of the type E p{h(.It)A t  for probability measures P within

a certain class, then, under certain mild conditions, one can produce

a stability version of the property. It is easily seen that Proposi-

tion 4 of KSh (1980) is an obvious corollary of Theorem 4 and also it

is not difficult now to state a stability version of our Theorem 2 of

Section 2 based on Theorem 4. (Note that in view of what was revealed

in Remark 13, the statement of Theorem 4 simplifies under the situation

in Theorem 2.) It is also worth pointing out in this place that (in view

of Proposition 5 of KSh (1980)) the "only if" part of Proposition 8 of

KSh (1980) follows as a corollary of the first part of Theorem 4 by

..
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letting S = R1 , T = (--,b), A {R 1  for every t e (--,b). P = P = the

set of measures in the sequence

"{PF n: n > 0, F° = F), (P2=)p3 =  FI
n n -

and for each t in T and P in P
".' ,* -Iif P ([x,oo)) > 0

( [}P*( [x ,- ))- 11 _ ift]

h(xit,At,P

hxt ) 40 otherwise;

moreover, if some simple initial observations are made and V, V1' P2

and P are appropriately redefined, the "if" part of Proposition 8 of
P3

KSh (1980) follows from the second part of Theorem 4. Essentially the

same argument leads to the following stability version of the charac-

* .. terization result in our Corollary 2 of Section 3. This result clearly

subsumes Proposition 8 of KSh (1980).

COROLLARY 3. Let p > 1 and {F n = 1,2,...} be a sequence of d.f.'s

on Rp and F be a continuous d.f. on RP . Assume that F and for each n,

F are members of the set C defined in the last section. Then
n

F (x) - F(x) for all x e RPn ~

if and only if

2F (x) W F(x) for all x withF(x) > 0,
n -

./ where the notation vG(X) stands for the vector whose elements (Qiven

in some specified order) are vG((--,x]) and its counterparts relative

to all the univariate and multivariate marginals of G, with appropriate

*'- subvectors in place of x and appropriate number of components in ,

and F stands for the survivor function corresponding to F as in the

earlier sections.
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